Gentamicin Released from Porous Scaffolds Fabricated by Stereolithography

نویسندگان

  • Somruethai Channasanon
  • Pareeya Udomkusonsri
  • Surapol Chantaweroad
  • Passakorn Tesavibul
  • Siriporn Tanodekaew
چکیده

Porous oligolactide-hydroxyapatite composite scaffolds were obtained by stereolithographic fabrication. Gentamicin was then coated on the scaffolds afterwards, to achieve antimicrobial delivery ability to treat bone infection. The scaffolds examined by stereomicroscope, SEM, and μCT-scan showed a well-ordered pore structure with uniform pore distribution and pore interconnectivity. The physical and mechanical properties of the scaffolds were investigated. It was shown that not only porosity but also scaffold structure played a critical role in governing the strength of scaffolds. A good scaffold design could create proper orientation of pores in a way to strengthen the scaffold structure. The drug delivery profile of the porous scaffolds was also analyzed using microbiological assay. The release rates of gentamicin from the scaffolds showed prolonged drug release at the levels higher than the minimum inhibitory concentrations for S. aureus and E. coli over a 2-week period. It indicated a potential of the scaffolds to serve as local antibiotic delivery to prevent bacterial infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method.

Dexamethasone, a steroidal anti-inflammatory drug, was incorporated into porous biodegradable polymer scaffolds for sustained release. The slowly released dexamethasone from the degrading scaffolds was hypothesized to locally modulate the proliferation and differentiation of various cells. Dexamethasone containing porous poly(D,L-lactic-co-glycolic acid) (PLGA) scaffolds were fabricated by a ga...

متن کامل

THE EFFECT OF NANO BIOGLASS ON THE FABRICATION OF POROUS TITANIUM SCAFFOLDS

In this study, porous titanium composites containing 5, 10 and 15 wt. % nanobioglass were fabricated by space holder sintering process. The pore morphology and phase constituents of the porous samples were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The mechanical properties were determined by compression test. The porosity of the sintered samples show...

متن کامل

A novel akermanite/poly (lactic-co-glycolic acid) porous composite scaffold fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process

Desirable scaffolds for tissue engineering should be biodegradable carriers to supply suitable microenvironments mimicked the extracellular matrices for desired cellular interactions and to provide supports for the formation of new tissues. In this work, a kind of slightly soluble bioactive ceramic akermanite (AKT) powders were aboratively selected and introduced in the PLGA matrix, a novel l-l...

متن کامل

Fabrication of Gelatin Scaffolds Using Thermally Induced Phase Separation Technique

Gelatin is considered as a partially degraded product of collagen and it is a biodegradable polymer which can be used to produce scaffolds for tissue engineering. Three-dimensional, porous gelatin scaffolds were fabricated by thermally induced phase separation and freeze-drying method. Their porous structure and pore size were characterized by scanning electron microscopy. Scaffolds with differ...

متن کامل

Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor.

Heparin-immobilized porous biodegradable scaffolds were fabricated to release basic fibroblast growth factor (bFGF) in a sustained manner. Heparin was covalently conjugated onto the surface of macroporous PLGA scaffolds fabricated by a gas-foaming/salt-leaching method. Sustained release of bFGF was successfully achieved for over 20 days due to high affinity of bFGF onto the immobilized heparin....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017